Cam core lathe work finished.

Gun drilled S7 tool steel. Eight standard and two VCT.

 

My poor little lathe got quite the workout:)

These are the fronts of the VCT cams.

I’m copying the K20 dimensions as closely as possible. For some reason they use a very shallow feed groove on the cam bearing and a much deeper groove on the phaser end.

 

Number one cam tower with the VCT grooves machined in. The drilled holes lead down to the head and the grooves will line up with the cam when I bore the towers.

 

The letter C is where the intake cam will be. Although that is a coincidence as this is tower 1 set C. The next step is numbering the towers and after that they are machined as sets. I’m doing five sets this run.

 

Making progress!

 

VCT design and cam core machining.

Been kind of busy so I have neglected updating things.

Before I started machining the cam cores I needed to finalize the VCT plumbing.  Here is a cross section showing the retard circuit. The oil comes up through the tower and enters the cam through the hole in the oil groove. It then travels forward and exits the front groove. Both retard and advance circuits are bidirectional so as oil enters one it exits the other. Honda designed it to move a lot of oil in order to have good response time at the phaser. Hopefully the changes I’ve had to make in order for it to fit in the new package won’t screw it up. Time will tell:)

This is the VCT intake cam. I’m drilling the control circuit holes. 4MM diameter 60MM deep in S7 tool steel. Did a bunch of tests before I did it and all and all it was fine.

 

Here is the snout after machining the end to size and cutting the oil grooves. I’ll cross drill the grooves in the mill when I do the lobes.

Here you can see the VCT intake, exhaust, and the rest of the non VCT cam snouts.

One down nine to go 🙂  All the lathe work is done on it and it is ready to go into the mill to machine the lobes.